Developmental I Review A

"Your future started yesterday"

1.2 Prime factorization

When I see the word factor, I am thinking to myself:

Ex. Factor: $36=$	$36=$	$36=$	$36=$

A number that can only be factored into the number 1 and itself is a \qquad number

Ex. A prime number:

If it is not a prime number, than it is a number

Prime numbers can only be factored \qquad way

Composite numbers can be factored into way

Factoring a composite number where there are only prime numbers is called

Prime factorization of 330 is: \qquad x \qquad x \qquad x \qquad $=330$

1.2 FRACTIONS

Dividing with zero:
$\overline{0}=\ldots \quad \frac{0}{}=\ldots$

Simplify fractions using
or \qquad

Ex. Simplify:
$\frac{24}{40}=\quad \frac{10}{100}=$
A fraction is \qquad
or is in \qquad
if you cannot divide the numerator and denominator any further.

A fraction where the denominator is greater than the numerator is called a

A fraction where the numerator is greater than the denominator is called an

A fraction with a whole number and a fraction is called a
\qquad .

Converting:
Mixed \rightarrow Improper:
Multiply the \qquad by the and then add
to the \qquad -.

* Do not answer as mixed number unless asked *

Ex. Convert to an improper fraction:
$3 \frac{1}{4}=$
$1 \frac{5}{6}=$

Converting:
Improper \rightarrow Mixed:
Divide the \qquad into the
\qquad . The quotient is the _, the
\qquad is the numerator, and the divisor is the \qquad .

* Never convert to a mixed number unless asked *

Ex. Convert to a mixed number:
$\frac{11}{4}=$
$\frac{35}{6}=$
$\frac{12}{3}=$

1.2 Multiplying and Dividing Fractions

When multiplying fractions, just multiply

Top to \qquad , bottom to \qquad .

Before you multiply always \qquad first.

Simplify \qquad \& \qquad .

Never \qquad

Ex. Multiply

$$
\frac{11}{4} \cdot \frac{3}{2}=\quad \frac{35}{6} \cdot \frac{18}{7}=
$$

Dividing Fractions

Multiply by the \qquad .
Think of reciprocal as \qquad the number.

Tricks to remember:
\qquad
\qquad it
\qquad C \qquad it
F \qquad
F \qquad it

Applying the rule makes it a \qquad problem.

Ex. Divide:
$2 \frac{9}{10} \div 3 \frac{4}{5}=$

$$
4 \div \frac{4}{10}=
$$

When dividing or multiplying with fractions, first make sure everything is a \qquad .

If it is not a fraction, put it over the number \qquad .

Exponents and Fraction
When there is an exponent, just \qquad
the exponent to the \qquad and the \qquad .

Ex. Simplify
$\left[\frac{4}{5}\right]^{2}=$

$$
\left[\frac{21}{49}\right]^{2}=
$$

1.2 Adding and Subtracting fractions: LCD

In order to add or subtract fractions, they must have the same

Only add and subtract the \qquad .

You do not do anything to the \qquad .

Ex. Simplify
$\frac{2}{4}+\frac{3}{4}=$

$$
\frac{6}{10}-\frac{5}{10}=
$$

To add or subtract fractions with \qquad denominators, find the \qquad first. LCD means the
\qquad

Find the LCD: find the prime factorization of both denominators. List the prime factors, and count how many times each factor occurs. Multiply each prime factor the greatest number of times you counted in any one factorization.

Ex. Find the LCD

```
3 and 36
10 and 12
```

Once you find the LCD for the denominators, change the denominators into the LCD with \qquad Whatever you do to the \qquad make sure you do to the \qquad as well.

Ex. Simplify
$\frac{4}{9}+\frac{5}{21}=$
$3 \frac{3}{8}-1 \frac{3}{20}=$

Fraction to Decimal
Convert fractions to decimals using \qquad .

The \qquad divides into the \qquad _.

Ex. Round to 3 decimal places
$\frac{7}{2}=$ $\frac{46}{9}=$

Rewrite to above fractions into long division problems below

Homework Checklis \dagger
\square Section 1.2 Fraction Review

